

17CS43

USN

Fourth Semester B.E. Degree Examination, Dec.2019/Jan.2020 Design and Analysis of Algorithms

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain Asymptotic notations in detail with example.

(12 Marks)

b. Outline an algorithm to find maximum of n elements and obtain its time complexity.

(08 Marks)

OR

2 a. Design algorithm for tower of Hanoi problem and obtain time complexity.

(10 Marks)

b. Prove the theorem

if $f_1(n) \in 0$ (g, (n)) and $f_2(n) \in 0$ (g₂ (n)) Then $f_1(n) + f_2(n) \in 0$ (max {g₁(n), g₂(n)}).

(10 Marks)

(10 Marks)

Module-2

- a. Design a recursive algorithm for binary search and calculate time complexity. (10 Marks)
 - b. Write the algorithm for merge sort and Trace 60, 50, 25, 10, 35, 25, 75, 30.

OR

- 4 a. Develop an algorithm for Quick sort and derive its time complexity. (10 Marks)
 - b. What is topological sorting? Apply DFS for below graph to solve topological sorting.

(10 Marks)

Module-3

5 a. Find the optimal solution to the knap sack instant n = 7, m = 15 using greedy method.

Object	1	2	3	4	5	6	7
Weight	02	03	05	07	01	04	01
Profit	10	05	15	07	06	18	03

(10 Marks)

b. Find the minimum spanning tree using Kruskal's algorithm.

(10 Marks)

1 of 2

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

OR

Construct a Huffman code for the following data:

to lot the lotte		,				
Characters	A	В	C	D	-	
Probability	0.4	0.1	0.2	0.15	0.15	

Encode the text ABACABAD and decode 100010111001010

(10 Marks)

Calculate the shortest distance and shortest path from vertex 5 to vertex 0 using Dijkstra's.

(10 Marks)

Fig.Q.6(b)

Module-4

Explain the general procedure to solve a multistage graph problem using backward approach (10 Marks) with an example.

b. Construct an optimal binary search tree for the following:

	Items:	A	В	C	D
1	Probabilities:	0.1	0.2	0.4	0.3

(10 Marks)

OR

Design Floyd's algorithm to find shortest distances from all nodes to all other nodes. 8

(10 Marks)

Apply Warshall's algorithm to compute transitive closure for the graph below.

(10 Marks)

Fig.Q.8(b)

What is Hamiltonian circuit problem? What is the procedure to find Hamiltonian circuit of a (10 Marks) graph?

Explain the classes of NP-Hard and NP-complete

(10 Marks)

Apply the branch and bound algorithm to solve the travelling salesman problem for the 10 graph below.

(10 Marks)

Obtain the optimal solution assignment problem given:

DS!	J_1	J ₂	J_3	J_4		
a	9	2	7	J ₄		
b	6	4	3	7		
c	5	8	1	8		
d	7	6	9	4		

(10 Marks)

2 of 2